$\binom{$ THEORY }{ PRACTICE }

INVARIANTS / MAPPING
 COMBINATORIALITY / ROTATIONAL ARRAYS

22 Mar 2019

Serial Review

- P forms (L>R) — named by first \#
- I forms (top>bottom) - named by first \#
- R forms ($\mathrm{R}>\mathrm{L}$) — named by last \#
- RI forms (bottom>top) - named by last \#

Segmental Subsets

- 12 note row can be segmented into:
- Discrete trichords (I23) (456) (789) (TE0)
- Other trichords (345) (89T)
- Discrete tetrachords (I234) (5678) (9TE0)
- Discrete hexachords (I23456) (789TE0)
- Derived Series = discrete segments are all same set class
- e.g., (014) $\times 4 \cdot(0 \mathrm{I} 2345) \times 2$

Read pg. 308-309

Invariant

- Any musical quality or relationship preserved when the series is transformed
- (same notes appear in different versions of the same set)
- $I_{5}(I)=4$ and $I_{5}(4)=I$
- It's a way to keep using the same notes by having it map onto itself in another set

Read pg. 312

Hexachordal Combinatoriality

- Entire hexachord related by I_{n}
- Produces aggregate (all I2 pitch classes)
- NB: Order of those 6 pitches can change
- See pg. 322

Types of HexaComb...

- I-Combinatorial: maps onto complement via I
- P-Combinatorial: maps onto complement via T
- R-Combinatorial: maps onto self via T
- RI-Combinatorial: maps onto self via I
- ALL-COMBINATORIAL - all of the above are true

Rotational Array

Always starts on same note, intervals shift LEFT one -or figure out interval of transposition

