$\binom{$ THEORY }{ PRACTICE }

POST-TONALTHEORY

22 Feb 2019

MODI2

- Pitch classes run 0-E so there are only 12 possible numbers
- Use a clock face to help if you're confused
- Pitch going up = clockwise
- Pitch going down = counterclockwise

ORDERED PITCH-CLASS INTERVALS

To calculate pitch-class intervals, it is best to refer to the pitch-class clockface (see Example 1-8). We will consider clockwise movement to be equivalent to movement upward, and counterclockwise movement equivalent to movement downward. With that in mind, the ordered pitch-class interval from C \# to A , for example, is -4 or +8 . In other words, from pitch-class $C \#$, one can go either up eight semitones or down four semitones to get to pitch-class A (+8 and -4 are equivalent $[\bmod 12]$). It would be equally accurate to call that interval 8 or -4 . By convention, we will usually denote ordered pitch-class intervals by a positive integer from 0 to 11 . But, from time to time, we may prefer to identify ordered pitch-class intervals larger than 6 by their negative equivalents: $7=-5 ; 8=-4 ; 9=-3 ; 10=-2 ; 11=-1$.

To state this as a formula, we can say that the ordered interval from pitch-class x to pitch-class y is:

$$
y-x(\bmod 12)
$$

Example 1-12 calculates ordered pitch-class intervals using the formula. Instead of using the formula, however, you will probably find it faster just to envision a musical staff, a keyboard, or a clockface. From the first pitch class, just count upward (clockwise) in semitones to the second pitch class.

EXAMPLE 1-12 Calculating ordered pitch-class intervals.

From C\# to Eb	$=3-1$	$=2$
From Eb to C	$=1-3=13-3$	$=10($ or -2$)$
From B to F	$=5-11=17-11$	$=6$
From D to Bb	$=10-2$	$=8($ or -4$)$
From Bb to C	$=1-10=13-10$	$=3$

ORDERED PITCH-CLASS INTERVALS

- FORGET EVERYTHING and do this:
**for OPCl , start on first pitch on clock and count CLOCKWISE up to second pitch (regardless of which is higher in the music)
- If it looks like $\mathrm{a}-\mathrm{I}$ on the music (goes down m2, it counts as an E in OPCl)—that way any $\mathrm{C}-\mathrm{B}$ move is the same number.

Unordered Pitch-Class Interval

- What is the smallest interval you can create with those two pitches?
- "Unordered" means it doesn't matter which is higher
- If C and E, could be 4, could be 8... 4=smaller
- If G and D, could be 7, could be 5... 5=smaller

UNORDERED PITCH-CLASS INTERVALS

- $3+7=$ what's the shortest path between them?
- 4
- Use your clock face and count if uncertain
- A to F
$-\mathrm{OPCI}=8$ (m6)
- UPCI $=4$ (M3, shorter distance when inverted)

Four ways of describing intervals

- $\mathrm{OPI}=+/-$ exactly how many half steps between specific pitches (C4+C8, may be >12)
- UPI = exactly how many half steps between specific pitches (C4+C8) without $+/-$
- $\mathrm{OPCI}=$ distance using relative position of pitch classes in mod 12 (0-E only)—count clockwise
- $\mathrm{UPCI}=$ shortest distance between pitches (invert to make smaller interval) in modl2 (0-6 only)

Interval Class Vector

- Count each UPCI created between each pair of pitches (will be 0-6)
- Mark how many $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}$ there are
- <IOII02> = one I, one 3, one 4, two 6

Interval Class Vector

Spacing Intervals

- However your chord is voiced, count OPCl from bottom note up
- So C, D, E (bottom to top) would be [2] [2]
- D, E, C (bottom to top) would be [2] [8]

Spacing Intervals

